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A quantitative structure-property relationship (QSPR) investigation was performed to
develop a mathematical link between molecular structure and the clearing temperature of
a series of structurally related liquid crystals. Molecular structures were encoded by a series
of numerical descriptors encoding information regarding size, shape, and the ability to
participate in intermolecular interactions. A genetic algorithm feature selection routine was
utilized to select high-quality subsets of these descriptors for use in computational neural
network models. A successful 10-descriptor model was developed using 318 compounds with
a root-mean-square error of 5.4 K for the clearing temperature for the compounds in an
external prediction set not used in model development.

Introduction

The use of liquid crystals in any particular applica-
tion, such as electrooptical displays, requires that
several physical properties be targeted for optimization.
Among these properties are viscosity, elastic constants,
refractive indices, and dielectric constants.1 However,
the most basic requirement is that the liquid crystalline
phase must exist in an appropriate temperature range
for the desired application.1

For quite some time, there has been an interest in
correlating molecular structure with liquid crystal
transition temperatures. Correlations of the anisotropic
molecular polarizability (∆R) with the nematic to iso-
tropic clearing temperatures (TNI) were used to explain
the well-known odd-even effect present in homologous
series.2 Maier and Saupe3 introduced a mean field
approximation for the prediction of TNI upon which
much of the later theory has been based. Knaack et al.4
developed a group contribution method for the predic-
tion of TNI for structures containing two phenyl rings.
This method was recently refined and extended to
include a wider diversity of substituents and linker
groups but was still limited to two aromatic rings.5
Recently, computational neural networks were used in
conjunction with a modified group contribution ap-
proach for the prediction of smectic6 and nematic7

transition temperatures.

Quantitative structure-property relationship (QSPR)
methodology has been used quite extensively in the
literature to predict many physicochemical properties,
such as boiling points,8,9 chromatographic retention,10,11

aqueous12 and supercritical CO2
13 solubilities, vapor

pressure,14 and polymer glass transition temperatures.15

Essentially identical methods are used for the prediction
of biological activities, including acute toxicity,16 human
intestinal absorption,17 and nonlethal mammalian end-
points.18 Here we present the development of QSPRs
using computational neural networks (CNNs) to predict
the clearing temperatures of a series of liquid crystals.
Numerical descriptors are calculated to encode features
of the chemical structures, which can then be linked to
the target temperatures using CNNs. This approach
may enable one to draw some conclusions regarding the
structural characteristics required for thermostability.

Experimental Section

Data Set. The compounds and transition tempera-
tures used in the development of the predictive models
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were taken from the literature.19-22 As discussed in each
of the original sources, all transition temperatures were
determined by optical microscopy using a Leitz Ortholux
II POL BK microscope in conjunction with a Mettler FP
82 heating stage and FP 80 control unit. The transition
temperatures were confirmed using a Mettler DTA TA
2000. The original papers do not report experimental
errors for the clearing temperatures; however, an error
estimate of a few degrees seems reasonable. In the
development of the models here, the clearing tempera-
ture (in degrees Kelvin) was used as the dependent
variable. The phase structure of the liquid crystal prior
to the transition to an isotropic liquid was not consid-
ered during the model building process. The compounds
and their experimental and calculated clearing temper-
atures are listed in Tables 1 and 2.

Each of the 318 calamatic compounds contained either
a pyrimidine or a pyridine ring, one or two phenyl rings,
and possibly a single cyclohexyl ring. Many of the
cyclohexyl-containing compounds contained a linker
group between the cyclohexyl ring and the adjoining
phenyl ring. Due to the large difference in clearing
temperatures between two- and three-ring core liquid
crystals, the compounds were divided into two- and
three-ring subsets for model construction. There were
209 two-ring compounds, with a clearing temperature
range of 304-367 K and 109 compounds containing
three rings, with a clearing temperature range of 364-
492 K. Each of these structural subsets was divided into
a training, cross-validation, and prediction set for the
purpose of model building. The training set (tset) is used
to train the models (i.e., adjust the weights and biases
of a computational neural network). The cross-validation
set (cvset) is used to determine the point at which a
CNN has begun to learn tset-specific information and
is no longer generalizing. The prediction set (pset) is
used only for the validation of the final model. For the
model developed for the entire dataset, the tset, cvset,
and pset for both subsets were combined so that direct
comparisons could be made among the three models.

Molecular Modeling. Each compound was sketched
using HyperChem on a personal computer. The Hyper-
Chem model builder was used to place the structures
in three-dimensional coordinates. As many of the de-
scriptors that were calculated were dependent upon
realistic geometries, the 318 structures were modeled
more accurately using the semiempirical molecular
orbital program MOPAC23 with the PM3 Hamiltonian.24

Due to the flexibility of the structures, many possible
conformations were accessible. Structures were consid-
ered to be optimized when no conformation lower in
energy could be found.

Descriptor Generation. A series of structural de-
scriptors was calculated to numerically represent the
structures. The descriptors calculated by ADAPT can
be divided into three classes: geometric, electronic, and
topological. Geometric descriptors, such as solvent ac-

cessible surface areas and moments of inertia, describe
three-dimensional characteristics of the molecular struc-
tures. Topological descriptors are based on encoding
molecular structures as graphs, consisting of nodes and
edges. They include molecular connectivity indices,
substructural descriptors, and path counts,25,26 which
generally encode information regarding the size and
degree of branching of the molecular structure. Elec-
tronic descriptors are calculated using an empirical
atomic charge scheme.27

A fourth class of descriptors which combine both
electronic and geometric information was also calcu-
lated. These descriptors, known as charged partial
surface area (CPSA) descriptors,28 encode information
regarding intermolecular interactions such as hydrogen
bonding or polar interactions. Intermolecular interac-
tions play a pivotal role in the liquid crystal phenom-
enon. As packing forces play a significant role in the
liquid crystalline state, the standard hydrogen-bonding
descriptors were extended to include weak hydrogen-
bonding interactions. Specifically, a hydrogen bound to
an electroneutral carbon was considered to be donatable,
and phenyl rings were regarded as hydrogen-bond
acceptors.29 In an ordered, close-packed system (com-
pared to an isotropic liquid or gaseous state), these
intermolecular interactions likely play an important role
in the lateral forces which must be overcome for the
clearing transition.

Additional descriptors were suggested by work re-
garding chain ordering as an explanation of the odd-
even effect.30 The shorter and longer distance of the
terminal atoms of the alkyl chains from the molecular
axis defined by the ring-system core were calculated.
These values were used as descriptors (e.g., DEVI), as
were their sums and ratios. These descriptors are
explained pictorially in Figure 1.

A number of other descriptors were designed with the
specific application of liquid crystals in mind. For
example, the fraction of the molecular mass that existed
outside the rigid core of the liquid crystal was calculated
for each structure. In addition, the mass of each atom
in a alkyl/alkoxy/alkanoate chain was also scaled by its
distance from the center of mass of the core structure
(e.g., FLEX). In total, 218 descriptors were calculated
for each structure.

Feature Reduction and Selection. The pool of
descriptors was analyzed using two objective tests to
reduce the number of features being considered during
the model-building process. Descriptors containing 90%
or more identical values were removed from the pool,
as they contained little useful information. The remain-
ing descriptors were then subjected to a pairwise
correlation investigation. Pairs of descriptors correlating
above 0.90 were identified, and one of the descriptors
was eliminated from further consideration. For the
three-ring subset of structures, this resulted in 48
descriptors remaining; 44 descriptors remained for the
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two-ring subset of structures. For the combined model,
66 descriptors remained after the objective feature
reduction. Topliss and Edwards31 have suggested that
the ratio of the number of descriptors to the number of
observations be kept below 0.60 to lessen the probability
of chance correlations in a QSPR model. Each of these
reduced pools meet this criterion for the number of
descriptors versus the number of available training
observations.

Following this objective feature reduction, the reduced
pools of descriptors were screened using subjective
feature selection methods to identify subsets of descrip-
tors which related well to the liquid crystal clearing
temperatures. A genetic algorithm routine was used to
evaluate subsets of descriptors using a PRESS (predic-
tive residual error sum of squares) fitness from a CNN
training as the measure of subset quality. The genetic
algorithm finds a small, information rich subset of
descriptors using a directed search of the feature space.
The starting weights and biases for each CNN training
were selected using a generalized simulated annealing
optimization method.32 Subsets with fewer descriptors
but equivalent root-mean-square (rms) errors were
favored in the model selection process. The best subsets
identified using this approach were retained for further
analysis regarding the architecture of CNN for the fully
trained final model.

Computational Neural Networks. For the pur-
poses of QSPRs, a CNN can be considered as a nonlinear

regression method. Neural networks relate a series of
input variables to a targeted output through a process
known as training. There are several different methods
used in training a fully connected, three-layer, feed-
forward neural network. The CNN used for the work
in this paper utilizes a quasi-Newton method (BFGS)33-37

to optimize the weights and biases.38

To avoid overtraining, a cross-validation set (cvset)
was used periodically throughout the training process
to evaluate the networks’ ability to predict using the
current weights and biases. During the early stage of
training, the cvset rms error will decline along with the
rms error of the training set (tset). Eventually the rms
error of the cvset will begin to rise. At this point, the
network is no longer learning general information;
rather, it has begun to memorize information specific
to the training data. The set of weights and biases
corresponding to the cvset rms error minimum were
retained and used for later prediction.

The determination of the best CNN architecture was
done empirically. A small number of hidden neurons
was used at the beginning. Additional hidden neurons
were added stepwise until no appreciable improvement
in the tset and cvset rms errors was found. However,
the number of adjustable parameters in the final
network architecture should never exceed a number
greater than half the number of training observations

(31) Topliss, J. G.; Edwareds, R. P. J. Med. Chem. 1979, 22, 1238.
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Table 1. (Continued)

a Member of the cross-validation set (cvset). b Member of the prediction set (pset). c Monotropic transition or no liquid crytsalline phase
identified (melting point used). d Calculated clearing temperatures from the core-specific model. e Calculated clearing temperatures from
the combined-sets model.
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used in the training process. In other words, the ratio
of the number of tset members to the number of
adjustable parameters in the CNN39 should always be
greater than 2.0. The final, fully trained CNN was then
validated using the external prediction set as an esti-
mate of the utility of the model for predictions.

Descriptor generation, model development, and all
statistical analysis was performed using the Automated
Data Analysis and Pattern Recognition Toolkit (ADAPT)
developed in our laboratory40,41 and running on a DEC
Alphastation 500.

Results and Discussion

Clearing Temperature of Two-Ring Core Struc-
tures. The available data for the development of a
QSPR model to predict the clearing temperatures of
compounds containing two rings in the core were divided
in to a training set of 165 compounds and cross-
validation and prediction sets of 22 compounds each.
As described above, the training set was used to adjust
the weights and biases on the CNN, while the cvset was
used to determine an adequate stopping point for the
training process. The pset was used only to validate the
fully trained model.

The seven descriptors selected using the GA-CNN
feature selection tool with a leave-20%-out PRESS
cost function are shown in Table 3. The pairwise
correlation coefficient among these descriptors has
an average value of 0.28 and a range of 0.04-0.68.
Three of the descriptors chosen for this model were
topological. The molecular distance edge descriptor42

encodes information regarding the length of the alkyl/

(39) Livingstone, D. J.; Manallack, D. T. J. Med. Chem. 1993, 36,
1295.

(40) Computer-Assisted Studies of Chemical Structure and Biologi-
cal Function; Stuper, A. J., Brugger, W. E., Jurs, P. C., Eds.; Wiley-
Interscience: New York, 1979.

(41) Jurs, P. C.; Chou, J. T.; Yuan, M. In Computer Assisted Drug
Design; Olsen, E. C., Christoffersen, R. E., Eds.; American Chemical
Society: Washington, D. C., 1979; pp 103-129.

(42) Liu, S.; Chenzhong, C.; Li, Z. J. Chem. Inf. Sci. 1998, 38,
387.

Table 2. (Continued)

a Member of the cross-validation set (cvset). b Member of the prediction set (pset). c Calculated clearing temperatures from the core-
specific model. d Calculated clearing temperatures from the combined-sets model.

Figure 1. Schematic illustration of the calculation of the
largest and smallest deviation from the molecular axis. The
molecular axis is defined as the line connecting the first atoms
on either side of the rigid core structure.
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alkoxy chains:

where Lil,j4 is the path length between the ith carbon
bound to three hydrogens (primary) and the jth carbon
bound to no hydrogens (quaternary), and N14 is the total
number of paths between primary and quaternary
carbons. Additionally, two valence-corrected graph theo-
retic descriptors were chosen for use in the model. These
descriptors are encoding additional information regard-
ing the length of the side chains, as well as the location
of any double bonds and the nature of alkoxy or
alkanoate linkages to the core. The weighted mass of
the flexible chains consists of the sum of the atomic
weights of the atoms in the side chains, where each
atom is weighted by its distance from the center-of-mass
of the rigid core of the molecule. The number of
descriptors present in the model which explicitly encode
information regarding the nature of the alkyl/alkoxy/
alkanoate chains indicates the substantial role that
these moieties play in the clearing temperature. This
is not surprising, as the rigid core of the structures
varies only slightly over the two-ring portion of the data
set.

Additional descriptors encode the ability of the mol-
ecules to undergo hydrogen bonding. As mentioned in
the Experimental Section, the hydrogen-bonding de-
scriptors were extended to include very weak H-bond
interactions which are normally ignored in ADAPT
hydrogen-bonding studies. One hydrogen-bonding de-
scriptor (ACAA) contains information regarding the
ability to accept a hydrogen bond. MCHG is the maxi-
mum charge difference between a donatable hydrogen
and the atom to which it is formally bound (the
hydrogen donor, A), a measure of the hydrogen-bond
strength.

A plot of calculated versus observed clearing temper-
ature for this model is shown in Figure 2. The pairwise
correlation coefficient between calculated and observed
clearing temperature for all 209 compounds is 0.928,
and for the 22 compounds in the prediction set it is
0.911. The clearing temperature range shown in Figure
2 is from 300 to 370 K. Generally speaking, the model
appears best in the region which contains the bulk of
the available data. As the data become more sparse, the
observations tend to deviate more from the 1:1 correla-
tion line. This trend is not surprising, as empirical
methods tend to work best when a high observation
density is available in the training data. Nonetheless,
the model does encode the transition temperatures quite
well. The similar training set and prediction set rms
errors indicate that the model is robust and is capable

of making accurate predictions for compounds that are
structurally similar to the training compounds.

An interesting measure of the quality of a model for
a data set such as this is the degree to which it can
capture the trends in homologous series of compounds.
Figure 3 shows the clearing temperature trend over a
series of structures as the alkoxy chain length is
increased by the addition of carbons to the chain end.
The observed trend shows the well-known odd-even
effect, in which an oscillation in the clearing tempera-
ture is seen as each additional carbon is added to the
chain. Although there is no consensus in the literature
over the cause of this trend, it has been suggested that
it is correlated with the molecular polarizability ani-
sotropy, ∆R (R| - R⊥). Although the actual clearing

Table 3. Features Chosen Using GA-CNN for the
Prediction of the Clearing Temperature of Structures

with Two Rings in the Rigid Core

descriptor label

atomic charge weighted partial positive surface area PPSA-3
weighted mass of flexible chains FLEX
valence corrected path-6 clusters V6PC
valence corrected path-7 chains V7CH
molecular distance edge-14 MDE-14
average charge on H-bond acceptor atoms ACAA
max(qH - qA) MCHG

d14 ) ∏
N14

(Li1,j4)
1/(2N14)

Figure 2. Calculated clearing temperatures versus the
observed clearing temperatures for a structures containing two
rings. Compounds that have a calculated value exactly equal
to the observed value would lie on the 1:1 correlation line
shown.

Figure 3. Trend in a homolgous series of compounds as the
number of carbons in the alkoxy chain is increased. While the
calculated clearing temperatures correspond quite well to those
observed, the odd-even effect is not well-encoded in this
model.
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temperatures are matched quite well by the calculated
values, the odd-even effect is not well-captured by the
model in this case. Figure 4 shows another trend, as
the position of a carbon-carbon double bond is moved
down the octanoate chain. In this case, the oscillatory
trend seen in the observed data is represented quite well
in the calculated trend, although the calculated oscil-
lations are somewhat smaller than those observed.

Clearing Temperature of Three-Ring Core Struc-
tures. A separate model was developed for compounds
with three rings in their cores. These compounds con-
tained more diversity in the ring structure compared
to the two-ring structures. Again, the data set was
divided in to a training set, cross-validation set, and
external prediction set. A six-descriptor model was iden-
tified using the GA-CNN feature selection routine, and
it was retrained using a 6-5-1 CNN. The six descrip-
tors chosen are shown in Table 4. Pairwise correlations
among these descriptors range from 0.03 to 0.85, with
an average value of 0.26. The calculated versus observed
clearing temperature plot, with a range of 340-500 K
is shown in Figure 5. The pairwise correlation coefficient
between calculated and observed clearing temperature
for all 109 compounds is 0.949, and for the 10 com-
pounds in the prediction set it is 0.903.

Two of the six descriptors present in this model are
topological, and they encode information regarding the
length of the side chains. The distance between the most
positive and negative σ charges largely encodes the

position and orientation of the pyrimidine ring in the
central core structure. The relative negative charge,
average charge on H-bond acceptor atoms, and the
weighted charge on donatable hydrogens are somewhat
more difficult to interpret, but seem to relate to the
presence of an alkoxy linkage and the position of the
double bond on the side chains.

Several plots demonstrating the ability of the model
to encode information regarding trends in homologous
series are presented in Figures 6 and 7. As with the
two-ring core model, many of the trends in the experi-
mental clearing temperatures are seen in the calculated
clearing temperatures. These figures show a few typical
examples of homologous trends in the three-ring core
structures.

Combined Sets Model. To facilitate comparison
between models, the tset, cvset, and pset for develop-
ment of this model were each composed of a combination
of the respective sets from the development of the subset
models.

Figure 4. Trend in a homologous series of compounds as the
position and orientation of the double bond in an octanoate
chain is altered. In this example, the oscillations in the clearing
temperatures are well-captured by the fully trained CNN.

Table 4. Features Selected Using GA-CNN for the
Prediction of the Clearing Temperatures of 3-Ring Core

Liquid Crystals

descriptor label

relative negative charge RNCG
average charge on H-bond acceptor atoms ACAA
distance between most positive and negative

atomic σ charges
CSEP

number of path-6 clusters S6PC
total number of paths/number of atoms ALLP
(∑don-H|qH - qA| × SAH × qH)/SAtot WCDH

Figure 5. Calculated clearing temperatures versus the
observed clearing temperatures for a structures containing
three rings.

Figure 6. Homologous series of compounds in which the
number of carbons in the alkenoxy chain is increased.
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The best model identified by the GA-CNN feature
selection routine contained 10 descriptors, which are
listed in Table 5. This model was identified using a
leave-25%-out PRESS validation method as the cost
function in the genetic algorithm feature selection
routine. Pairwise correlations between the 10 descrip-
tors range from a low of 0.01 to a high of 0.88, with an
average value of 0.31. The final network architecture
was 10-5-1. Figure 8 shows the calculated clearing
temperatures versus the experimentally measured clear-
ing temperatures. The pairwise correlation coefficient
between calculated and observed clearing temperature
for all 318 compounds is 0.992, and for the 30 com-
pounds in the prediction set it is 0.983. The pset rms
error is lower than that for the three-ring model and
slightly larger than for the two-ring model. Calculating
the error for only the three-ring structures yields a
marked improvement over the rms error derived from
the three-ring specific model. This would indicate that
there is additional structural information obtained by
using all of the compounds in the development of the
model. Indeed, the rms error for the two-ring structures
in the pset also shows an improvement over the two-
ring only model.

An exception to this improvement would be the
compounds that are monotropic liquid crystals. Mono-

tropic liquid crystals enter the liquid crystalline phase
only when the temperature changes in one direction.
Typically, monotropic materials have a liquid crystal
transition temperature below the melting temperature,
so the liquid crystalline phase can only be entered
through supercooling. During the training of this com-
bined model, it was noticed that the monotropic materi-
als had an rms error of approximately 11 K, well above
the error for the other compounds. For this reason, they
were withheld during the training phase, and their
clearing temperatures were predicted using the fully
trained model. They were present, however, during the
feature selection process.

Glancing at the descriptors present in this model, it
is obvious that a substantial amount of overlap exists
between this model and the two core-specific models
described previously. For example, the average charge
on hydrogen-bond acceptors (ACAA) is present in all
three of the clearing temperature models. The distance
between the most positive and negative atomic σ
charges (CSEP) is also present in the three-ring core
model, as is the weighted charge of donatable hydrogens
(WCDH). PPSA-3 is present in both the combined model
and the two-ring core model. Also present in each of the
models are a number of topological path-length descrip-
tors. The large degree of overlap between the three
models may help explain the improvement in the pset
rms error.

Figures 9 and 10 demonstrate the ability of this
combined model to encode the trends in clearing tem-
peratures in homologous trends. As with the core-
specific models many, but not all, of the trends are well-
captured by the empirical model. The ability to predict
the trend among a series of homologues may prove
beneficial in some application design scenarios.

Conclusion

A series of QSPR models has been developed using
the genetic algorithm and computational neural net-

Figure 7. Trend in the observed and calculated clearing
temperatures as the location of the pyrimidine ring is altered.

Table 5. Features Selected Using GA-CNN for the
Prediction of the Clearing Temperatures of All Liquid

Crystals Listed in Table 1

descriptor label

relative positive charge RPCG
fractional atomic charge weighted partial negative

surface area
FNSA-3

atomic charge weighted partial positive surface area PPSA-3
average charge on H-bond acceptor atoms ACAA
distance between most positive and negative atomic

σ charges
CSEP

number of path-3 clusters S3C
valence corrected path-5 cluster V5C
molecular distance edge-24 MDE-24
distance of the farthest terminal alkyl atom from the

molecular axis defined by the ring structure
DEVI

(∑don-H|qH - qA| × SAH × qH)/SAtot WCDH

Figure 8. Calculated clearing temperatures versus the
observed clearing temperatures for all structures used in this
study.
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works for the prediction of liquid crystal clearing
temperatures. While the models do not predict the
clearing temperatures to within experimental error,
many of the trends in homologous series are captured
by the models. There are several areas in which
improvement could yield significant improvements in
the prediction errors for this type of application. The
first, and likely most influential, is the single conformer
selected from which to generate descriptors. The struc-
tures used in this work were modeled to a low-energy
conformation in vacuo. Of course, with structures that
are as inherently flexible as those used here, a single
low-enery conformer is only an approximation of the
dynamic range of conformers present in the liquid
crystalline phase. Additionally, the encoding of packing
forces in close-packed systems, such as molecular crys-
tals, has long been a stumbling block in the prediction

of properties such as melting points.43 It is likely that
improvements in this area would enhance the prediction
of liquid crystalline properties as well.

The QSPR models developed here included numerical
descriptors regarding structural topology and the nature
of any intermolecular interactions required for thermo-
stability. These features, coupled with computational
neural networks, were capable of predicting the clearing
temperatures with an rms error of 5.4 K for a series of
compounds not used to select descriptors or to train the
neural networks. Future work should investigate using
this QSPR methodology to investigate relationships
among materials with a more diverse range of structural
features.

CM980674X

(43) Katritzky, A. R.; Maran, U.; Karelson, M.; Lobanov, V. S. J.
Chem. Inf. Comput. Sci. 1997, 37, 913.

Figure 9. Trend in the observed and calculated clearing
temperatures as the number of carbons is increased in the
alkenoate chain.

Figure 10. Trend in the observed and calculated clearing
temperatures as the number of carbons is increased in the
alkenoxy chain.
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